Wild Markets: The Fractal/Multifractal View of Risk, Ruin, and Reward

Benoit Mandelbrot

Sterling Professor of Mathematical Sciences Emeritus, Yale University, New Haven CT

"The deepest and most realistic finance book ever published." —Nassim Nicholas Taleb, author of *The Black Swan*

(MIS)BEHAVIOR OF MARKETS

THE

A Fractal View of Financial Financial Turbulence

Author of THE FRACTAL GEOMETRY OF NATURE

BENOIT MANDELBROT & RICHARD L. HUDSON Benoit B. Mandelbrot

FRACTALS and SCALING in FINANCE

Discontinuity, Concentration, Risk

On Rocks.

A stone, when it is examined will be found a mountain in miniature. The fineness of Nature's work is so great, that, into a single block, a foot or two in diameter, she can compress as many changes of form and structure, on a small scale, as she needs for her mountains on a large one.

J. Ruskin, Modern Painters (1860)

A LOT CAN HAPPEN IN TEN DAYS

Conventional finance theory treats big one-day market jumps or drops as anomalies that can be safely ignored when gauging risk or forecasting returns. But if you remove the ten biggest one-day moves (both up and down) from a chart of the S&P 500 over the past 20 years, you get a picture very different from market reality. The big moves matter.

VAR & Conditional Probabilities

The Variation of Financial Prices

Stack of price increments: actual data mixed with simulations: Brownian, unifractal, mesofractal, and multifractal

"Ten sigma" events probability, according to the Gaussian distribution, is: a few millionths of a millionth of a millionth of a millionth

(Inverse of the Avogadro number!) Absurd. The Gaussian is not a "norm." It grossly *fails* to fit reality.

Least peaked bell: Gaussian Most peaked bell: Cauchy In between bell: Lévy stable distribution.

Cartoons of Price Variation

Fractal model founded on scaling or self-affinity, a principle of invariance under reduction or dilation.

- Generator is symmetric, hence defined by its first break point
- Recursive roughening implemented by a cascade

Cartoons' Output: Simple to Complex

A cascade's outcome

- is varied and variable
- is tunable from overly simple to overly complex

Guarantee: these cartoons hide no "additive" beyond shuffling

he position and a second s	
	winger a finantife war an and high
	and the an entertainty the advertised

Recursive fractal cartoon of Brownian motion

Recursive fractal cartoon of Lévy stable motion

Recursive fractal cartoon of fractional Brownian motions

Recursive cartoons of multifractal functions

Eight samples from one multifractal population

Cartoons' Phase Diagram

The plot's coordinates define the first break of the cartoon generator

States of Randomness/Variability: The "Mild State"

- The common apparatus of probability/statistics: law of large numbers, central limit theorem, asymptotically negligible addends and correlation
- Constitutes a "mild" or "passive" "state" of randomness/variability, patterned on the Brownian
- Implemented by the isolated Fickian point
- This state cannot "create" structure, only blurs existing structure
- Mild randomness was the first stage of indeterminism but does not exhaust it; indeterminism extends beyond this first stage.

States Of Randomness/Variability: The "Wild" State

- Non-Fickian cartoons exhibit long tails and/or long dependence
- As a result, the common apparatus does not apply
- The "wild," "active" or "creative" randomness does not average out
- It actually *mimics* structure- or *creates* its appearance
- Concentration: absent, mesofractal or multifractal
- Cartoons, models, and three-state representations

Emperical Test of the Prices' Multifractality

determination of t(q)

determination of *f*(a) as an envelope

 The step from mild to wild variability, from the first to the second stage of indeterminism, marks a sharp increase in complexity; a frontier for science

 For the reductionist: the chastening examples of turbulence and 1/f noises

Roughness is a frontier that science long ignored; now it must be faced

- The rms measures of volatility (in finance, metallurgy, etc.) assume mild variability
- Surprising riches: "fractals everywhere!"
- Legitimate concern: "too good to be true"
- Resolution: roughness must be faced; it clearly contradicts mild variability; wildly variable fractals often face it

RESEARCH NOTE

Thomas J. Watson Research Center, Yorktown Heights

THE VARIATION OF CERTAIN SPECULATIVE PRICES

by

Benoit Mandelbrot

March 26, 1962

ABSTRACT: A new theory of the variation of prices is presented; it is based upon three successive modifications of the classical stochastic model due to Louis Bachelier (1900). The mathematical background is restated, many empirical data are presented, and a variety of statistical problems are raised.

This is a preliminary report, replacing RC-470.

IBM

CALCUL DES PROBABILITES ET ÉCONOMIE STATISTIQUE, — Sur certains prisspéculatifs : faits empiriques et modèle basé sur les processus stables additifs non gaussiens de Paul Lévy. Note (*) de M. BENOIT MANDELBROT, présentée par M. Joseph Kampé de Fériet.

1. Une nouvelle observation empirique. — Commençons par examiner la variation temporelle de certains prix spéculatifs. Les figures 1 et 2 se référent aux prix du coton, livrable immédiatement, sur divers marchés américains: mais des résultats très analogues tiennent pour d'autres produits bruts et certaines actions industrielles. Z(t) étant le prix de clôture au jour t, soit $L(t, T) = \log_{\tau} Z(t + T) - \log_{\tau} Z(t)$. Les figures 1 a et 2 a donnent $\operatorname{Fr}[L(t, 1) > u]$ et $\operatorname{Fr}[L(t, 1) < -u]$ pour 1900-1904. Les figures 1 b et 2 b donnent $\operatorname{Fr}[L(t, 1) > u]$ et $\operatorname{Fr}[L(t, 1) < -u]$ pour 1944-1958. Les figures 1 c et 2 c donnent $\operatorname{Fr}[L(t, un mois) > u]$ et $\operatorname{Fr}[L(t, un mois) < -u]$ pour 1880-1940. Les coordonnées sont bilogarithmiques (il nous paraît étonnant que — tout au moins à notre connaissance — les variations des prix n'aient pas été présentées de cette façon jusqu'ici). Fr = fréquence relative.

Il est clair que ces diverses courbes deviennent très vite des droites de pentes égales et voisines de z = 1.7. Donc, on peut écrire :

```
\begin{split} \log \|\operatorname{Fr}(\mathbf{L}(t,\mathbf{T}) > -u_1)\| &\sim + x \log u + \log C_1(\mathbf{T}), \\ \log \|\operatorname{Fr}(\mathbf{L}(t,\mathbf{T}) < -u_1\|_{1} &\sim -x \log u + \log C_1(\mathbf{T}), \end{split}
```

Ainsi la loi de Pareto est asymptotiquement satisfaite par lesdeux « queues »; $C' \neq C$ ", donc il y a une légère asymètrie; la valeur moyenne de L(t, T) est pratiquement nulle.

1 a et 1 b étant parallèles, la distribution de L(t, 1), n'a bougé pendant la guerre que par changement d'échelle. Nous avons vérifié que — de 1816 à 1940 — la distribution de L(t, 1) a três peu changé. Donc le parallélisme de 1 a et 1 c, et de 2 a et 2 c, montre que la distribution de L(t, un mois)ne diffère de celle de L(t, 1) que par un changement d'échelle : on peut dire que la loi de distribution de L(t, T) est « stable par changement de T «. Notons aussi que, z étant plus petit que 2, L(t, 1) ne posséde pas de moment au-delà du premier (fig. 3); donc, la plupart des « recettés « statistiques sont inapplicables.

2. Modèle additif des changements des prix. — Modifiant une hypothèse classique de Bachelier, supposons que les changements successifs de log Z(t)sont indépendants. Dans ce cas, la stabilité du n° 1 se confondrait avec la stabilité au sens de Paul Lévy, et la fonction caractéristique de L(t, T)devrait nécessairement être de la forme

 $= u(\xi) = \exp \Big\{ (M \xi + (\Omega^* | \xi \circ \Big| x + (\xi \cdot \frac{\xi}{\xi}) tg \Big(\frac{1}{\xi} a \pi \Big) \Big) \Big\},$

Echelle des obscisses des figures 2a, 2b et 2a u=-0,01 u=-0,1 u=-1,0 1,0 11111 TTTTTT figure/ den sue f 0. a des 0,01 t Echelle U>001 u+0.1 U=1,0 Echelle des abscisses des figures Id, ib et ic Fig. 10, 1 b et 10, 20, 2 b et 20 : Voir l'explication dans le texte. 0,001 E 0,0005 0,0004 0,0002 0,0001 0,00008 0,00006 0,00004 Figure 3 0,00002 0,00001 100 1000 10

On sait que les lois correspondantes sont asymptotiquement paretiennes avec l'indice x. Donc, le caractère paretien de L(t, T) est « prédit » ou

et o < 2 <1 00

1<2<1.

(2)

où

C>0.

 $|\hat{\rho}| \leq 1$

1-+

 confirmé » par la stabilité; il a aussi été confirmé d'autres façons (coir nº 4).

On doit aussi avoir C' (T) = T C' (1) et C'' (T) = T C'' (1). Cette prédiction de la théorie de Lévy est aussi très proche des faits.

3. Sur la théorie de la spéculation. — Le modèle ci-dessus peut être interpolé en faisant du temps une variable continue. On sait que les fonctions engendrées par le processus correspondant sont presque surement presque partont discontinues. Ceci a les conséquences les plus étendues du point de vue de la théorie de la spéculation. La probabilité de ruine ne s'annule que si l'on spécule à 100 % de marge.

4. Une forme détaillée des résultats que nous venons d'annoncer constitue le rapport nº NC-87 du Centre de Récherches de la Compagnie I.B.M., à Yorktown Heights, New York, U. S. A. Notre théorie des prix spéculatifs présente les liens les plus étroits avec notre théorie des revenus, exposée précédemment (').

(*) Séance du or mai 1969.

(1) International Economic Review, 1, 1960, p. 79-106 et 3, 1967 (sous presse); Economicica, 29, 1961, p. 517-513; Quarterly Journal of Economics, 76, 1969, p. 57-85.

Extrait des Comples rendus des séances de l'Académie des Sciences, L. 254, p. 3968-3970, séance du 4 Juin 1965.

> GAUTHIER-VILLARS & Cie, 55, Quai des Grands-Augustins, Paris (6°), Éditeur-Imprimeur-Libraire. 161929

> > Imprimé en France.

THE FRACTAL GEOMETRY OF NATURE

Benoit B. Mandelbrot

W. H. Freeman & Co., 1982.

MULTIFRACTALS and 1/f NOISE

Wild Self-Affinity in Physics

B.B. Mandelbrot

GAUSSIAN SELF-AFFINITY and FRACTALS

FRACTALS AND CHAOS

The Mandelbrot Set and Beyond

Benoit B. Mandelbrot

Springer, 2002

Springer, 2004

M. L. Frame & B. B. Mandelbrot

FRACTALS, GRAPHICS, & MATHEMATICS EDUCATION

Mathematical Association of America, 2002

Basic Books, 2004

"The deepest and most realistic finance book ever published." —Nassim Nicholas Taleb, author of *The Black Swan*

(MIS)BEHAVIOR OF MARKETS

THE

A Fractal View of Financial Financial Turbulence

Author of THE FRACTAL GEOMETRY OF NATURE

BENOIT MANDELBROT & RICHARD L. HUDSON

